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Abstract: Estimating seabird and pinniped abundance is central to wildlife management and ecosys-
tem monitoring in Antarctica. Unoccupied aerial systems (UAS) can collect images to support
monitoring, but manual image analysis is often impractical. Automating target detection using deep
learning techniques may improve data acquisition, but different image sensors may affect target
detectability and model performance. We compared the performance of automated detection models
based on infrared (IR) or color (RGB) images and tested whether IR images, or training data that
included annotations of non-target features, improved model performance. For this assessment, we
collected paired IR and RGB images of nesting penguins (Pygoscelis spp.) and aggregations of Antarc-
tic fur seals (Arctocephalus gazella) with a small UAS at Cape Shirreff, Livingston Island (60.79 ◦W,
62.46 ◦S). We trained seven independent classification models using the Video and Image Analytics
for Marine Environments (VIAME) software and created an open-access R tool, vvipr, to standardize
the assessment of VIAME-based model performance. We found that the IR images and the addition
of non-target annotations had no clear benefits for model performance given the available data.
Nonetheless, the generally high performance of the penguin models provided encouraging results
for further improving automated image analysis from UAS surveys.

Keywords: automated detection; Antarctica; drone; census; image analysis

1. Introduction

Estimating the abundance of land-based breeding aggregations of seabirds and pin-
nipeds is a key part of population monitoring and marine resource management efforts [1].
However, remote locations of breeding colonies, inaccessible or hazardous beach landings,
and narrow periods of time for conducting standardized counts of adults or offspring can
constrain the collection of census data using traditional ground-based counting techniques.
Additionally, large aggregations can complicate manual counts and may require extended
visitation at breeding locations to achieve reliable estimates. One alternative to manual
ground counts is the use of small, unoccupied aerial systems (UAS) that can systematically
survey breeding aggregations using airborne cameras.

Advances in UAS technology [2–4] have facilitated the development of safe, reli-
able platforms for research [5], particularly in polar environments [6]. Moreover, surveys
conducted with small UAS can offer relatively low-disturbance methods [7] for quickly
obtaining full photographic coverage of large breeding colonies in remote and inaccessible
areas [8,9]. However, with the use of UAS, the burden of analysis shifts from on-site
counting efforts to the review and annotation of images. The cryptic nature of pinnipeds
and seabirds in polar areas and the high-contrast environment (e.g., bright snow or ice
on dark substrates) can introduce uncertainty when identifying species or life stages from
photographs. Additionally, UAS images collected at the scales necessary to count large,
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often dispersed breeding aggregations can create large data streams that are unmanage-
able for manual image analysis. Moreover, a manual process of identifying and counting
individuals or species within photographs can be difficult to replicate across multiple ob-
servers. Automated image analysis is therefore appealing as it can provide a structured and
replicable process to advance the use of small UAS aerial surveys for rapid census work.

The development of machine learning (ML) algorithms, particularly deep learning
classification models that are rooted in convolutional neural networks [10], provides accessi-
ble opportunities to automate image analysis in support of UAS-based predator monitoring.
Prior efforts to develop automated methods for the detection of penguins and pinnipeds in
polar settings from aerial surveys have yielded varying degrees of success [11,12]. However,
continual improvement in automated image classification algorithms [13], development
of open-access tools that support a broader implementation of machine learning tech-
niques [14,15], and the expanding use of automated and semi-automated methods to detect
and classify a wide range of organisms in aerial images [16–18] support further exploration.

A key factor affecting the utility of UAS-derived images for animal detection is the
choice of sensor used to image targets. The utility of traditional color (RGB) imagery can
depend on light levels, contrast of targets with background substrate (e.g., ice, snow, rock,
vegetation), and shadows that may mask targets. Alternatively, infrared (IR) thermal imag-
ing may improve the detection of warm targets against colder backgrounds irrespective
of light levels, potentially reducing image complexity and improving target detectabil-
ity [17,19–22]. For example, Hyun et al. [22] report that thermal sensors were advantageous
for detecting large elephant seals in a maritime Antarctic setting. To assess the benefits of
IR images relative to RGB images for automating the detection of smaller Antarctic organ-
isms, we used a single camera with integrated IR and RGB sensors. The paired images
facilitate the direct comparison of the different spectra for automating animal detection in
the northern Antarctic Peninsula, where targets may occur on substrates that include snow,
ice, water, rock, cobble, guano, moss, and grasses.

Here, we evaluate IR and RGB sensors for using deep learning convolutional neural
networks (CNN) to automate the detection of target penguins (Pygoscelis spp.) and Antarctic
fur seals (Arctocephalus gazella) in images collected by a small UAS. Such direct comparisons
of sensor types for use in developing automated detection algorithms is, to our knowledge,
not commonly considered in UAS applications. We used the Video and Image Analyt-
ics for Marine Environments software (VIAME v0.16.1; https://www.viametoolkit.org,
accessed on 8 September 2021), a publicly available computer vision application for build-
ing and deploying image analysis tools [15,23], to build separate detection models from
paired IR and RGB images. We ask specifically whether models developed from IR images
performed better than models from corresponding RGB images. Finally, we introduce a
method to assess model performance with a custom R [24] package, vvipr (Verify VIAME
predictions v0.3.2; https://github.com/us-amlr/vvipr; accessed on 14 September 2022),
that allows users to adjust thresholds for identifying valid model predictions, visualize the
overlaps of model predictions and truth (expert) annotations, and rapidly calculate aggre-
gate model performance metrics using a standardized, repeatable process. We developed
vvipr as a GUI-based web application with the R package shiny [25] to make it accessible
to non-R users. We describe the core functionalities of vvipr here.

2. Materials and Methods
2.1. Aerial Surveys

We conducted aerial surveys at Cape Shirreff, Livingston Island, Antarctica (60.79 ◦W,
62.46 ◦S) during the 2019–2020 austral summer. Aerial surveys were flown over breeding
aggregations of chinstrap (Pygoscelis antarcticus) and gentoo (P. papua) penguins in Decem-
ber 2019 and over aggregations of Antarctic fur seals consisting of pups (<3 months old)
and non-pups (≥1 year old) at Cape Shirreff and the neighboring San Telmo Islands in
December 2019 and February 2020. All aerial surveys occurred under the Marine Mammal
Protection Act Permit No. 20599 granted by the Office of Protected Resources/National Ma-
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rine Fisheries Service, the Antarctic Conservation Act Permit No. 2017-012, NMFS-SWFSC
Institutional Animal Care and Use Committee Permit No. SWPI 2017-03, and all domestic
and international UAS flight regulations.

We flew an APH-28 hexacopter (Aerial Imaging Solutions, LLC, Old Lyme, CT, USA)
for all surveys and used a bespoke ground station that receives real-time flight information
and video data from the aircraft. The APH-28 weighs 1.6 kg, can be powered by up to
three batteries (6-cell 440 mAmp lithium-polymer), and has a payload capacity of 1.8 kg
with an estimated flight endurance of 30 min. We used the FLIR Duo Pro R camera system
(Teledyne FLIR LLC., Wilsonville, OR, USA) as payload to image the animal aggregations.
The camera system contains independent thermal (IR, 0.33 megapixel) and color (RGB,
6 megapixel) sensors that, upon triggering, capture simultaneous IR and RGB images of
the same target area. We used this integrated camera system to enable direct comparisons
of models developed from the different sensors.

We conducted visual-line-of-sight aerial surveys, flying between 30 and 90 m above
ground level (AGL). Survey grids for each flight covered target aggregations of animals
and the camera triggered when the aircraft paused at each waypoint.

2.2. Image Sets for Analysis

From all images collected during the flights, we selected a subset of images that met
three criteria. First, we selected only IR and RGB images that contained targets (penguins
or fur seals). Second, we retained only the pairs of IR and RGB images that exhibited
minimal blurring from sensor movement or aircraft vibrations. Although blurring occurs
normally in UAS aerial survey work, the extent of blurring in much of the IR imagery was
atypical and unfit for model training (Figure S1). Third, we rejected IR and RGB pairs if
the images contained individuals present in previously selected images (i.e., overlapping
images). In this way, we sought to ensure each image pair represented a unique set of
in-focus individuals for model training and testing. Extensive blurring of poorly resolved
targets resulted in the rejection of most images obtained during the survey flights. In total,
we retained 20 image pairs containing penguins and, initially, 23 image pairs containing
fur seals. Upon annotation, we discarded two images from the fur seal IR analysis due to
inconsistent blurring of individuals but retained the corresponding RGB images for the
RGB analysis (Table 1).

Table 1. Total number of images and individual animal targets in the penguin and fur seal annotations.
Differences in the number of targets between thermal (IR) and color (RGB) images reflect differences
in the ability to manually identify targets, differences in the spatial footprint of the respective image
types (RGB images often had a slightly larger footprint, hence more individuals), or differences in the
number of images used.

IR RGB

Target Image Set N Photos N Targets N Photos N Targets

Penguin Training 14 1686 14 1880
Test 6 826 6 955

Fur seal Training 17 228 19 517
Test 4 83 4 139

2.3. Image Annotation

We manually annotated each image set with the annotation tools provided in the
desktop version of VIAME software (version 0.16.1) or in the online instance of VIAME-
Web (https://viame/kitware.com/, accessed on 1 November 2021). We used rectangular
bounding boxes to identify target classes, centering the bounding box on the target and
extending the edges to surround all visible features of the target. For the penguin model,
we could not distinguish chinstrap and gentoo penguins in the IR images, so we simply
annotated individuals as generic ‘penguins’ for all analyses. For the fur seal model, we

https://viame/kitware.com/
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identified individuals as pups or non-pups based on the relative size of imaged targets (all
images) and coloration (RGB images only).

In addition to the target classes for detection, we also included annotations of non-
target features to test whether the additional information might help constrain the detection
of penguin or fur seal targets. These non-target features included rocks, abandoned nests,
guano stains, or other identifiable objects in the images that shared visual characteristics of
the target classes. For example, in the penguin image set, we added non-target annotations
for 212 “warm” and 172 “cold” background areas in the IR images and, correspondingly,
276 “light” and 296 “dark” background features in the RGB images. For the fur seal
image set, we included 42 annotations of an “other” class that identified non-targets with
visual characteristics similar to fur seal pup targets in the RGB imagery only. The image
annotations thus define seven classification models that we trained and tested (Table 2) to
compare model performance.

Table 2. Seven annotation sets for model training and testing of automated image classification
models. The model names identify the animal, image type, and the presence of only target classes
(TC) or multiple classes (MC) of target and non-target classes in the annotations.

Target Image Type Description Model Name

Penguin IR penguin only Peng_IR_TC
IR penguin + 2 non-target classes Peng_IR_MC

RGB penguin only Peng_RGB_TC
RGB penguin + 2 non-target classes Peng_RGB_MC

Fur seal IR 2 fur seal classes only Seal_IR_TC
RGB 2 fur seal classes only Seal_RGB_TC
RGB 2 fur seal classes + 1 non target class Seal_RGB_MC

2.4. Model Training and Testing

We randomly split the collection of paired IR and RGB images into two image sets
for independent model training and model testing. For penguins, we set aside 70% of the
images for training and 30% for model testing (Table 1). Due to the reduced number of
targets in the fur seal images relative to the penguin images, we assigned at least 80% of
the fur seal images to the training set (Table 1).

Using the training images and annotation sets (Table 2), we trained seven independent
classification models based on the YOLOv3 CNN model [13] as implemented in its default
configuration in VIAME v0.16.1 [15,23]. The default YOLOv3 model was trained originally
on the COCO dataset [26]. The use of the YOLOv3 model is consistent with prior work to
automate detection of other organisms [17,21]. Note that the IR images are single-channel
8-bit images, whereas the RGB images are 3-channel 24-bit images. The implementation
of YOLOv3 in VIAME typically requires a 3-channel input images. However, the model
automatically replicates the single-channel IR image to achieve the necessary 3-channel
input without material change to the information available for model training. Once
trained, we confronted each model with its corresponding set of novel test images (Table 1)
to generate predictions for each target class. The predictions provide a bounding box to
identify the location of the target, a label to identify the class of the target, and a confidence
level on the prediction ranging from 0 to 1. The confidence level represents an estimate of
the degree to which a prediction differs from the target class (i.e., it is not a probability of
correct identification).

2.5. Model Evaluation

We used vvipr to evaluate the performance of each model by comparing the model
predictions on the test images (Table 2) to the corresponding truth annotations for the test
images. The method of vvipr is chiefly concerned with identifying false positives (FP) in the
model predictions, from which counts of false negatives (FN) and true positives (TP) can be
estimated, given known counts of truth annotations and total model detections, using the
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‘uniroot’ optimization [27] in R [24]. From the total counts of FP, FN, and TP, we computed
five standard performance metrics to characterize aggregate model performance: accuracy,
precision, recall, F1, and mean average precision (mAP) of each model. The performance
metrics are defined as:

Accuracy =
TP

TP + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
TP

TP + 0.5(FP + FN)
(4)

mAP =
1
N ∑N

i=1 Average Precisioni (5)

Accuracy represents the ratio of the number of correct predictions relative to the total
number of observations. Precision represents the ratio of the number of correct predictions
relative to the total number of predictions. Recall represents the ratio of the number of
correct predictions relative to the total number of possible correct predictions. The F1
score is a weighted average of Precision and Recall. These four metrics represent aggregate
measures of model performance for all target classes and are based on the model evaluation
thresholds identified by a sensitivity analysis (see below). The mAP represents the mean
of the class-specific average precision that is calculated over a range (e.g., 10% to 90%) of
overlap thresholds.

When assessed together, this suite of metrics provides a useful benchmark to assess
model performance. We used a benchmark value of 0.9 as a target performance goal. This
benchmark is an arbitrary choice, representing a threshold that is lower than the traditional
5% error for manual counts of individual nests in a colony of Antarctic seabirds [28] but sim-
ilar to the model performance achieved in another application of automated classification
of penguins from UAS images [11].

The evaluation of the models for Accuracy, Precision, Recall, and F1 required the selec-
tion of appropriate confidence and overlap thresholds for accepting predictions as correct.
These thresholds are implemented in vvipr as (1) the confidence threshold for initial fil-
tering of model predictions; (2) the minimum proportion of the geometric area of a truth
annotation that is overlapped by a prediction (truth overlap); and (3) the minimum pro-
portion of the geometric area of the prediction that overlaps a truth annotation (prediction
overlap). The confidence threshold optionally filters out low-confidence predictions prior
to analysis. The “truth overlap” parameter optionally requires that the prediction overlaps
the area of the truth annotation to the degree specified. The “prediction overlap” optionally
allows for the retention of predictions in special cases where the total area of the prediction
is small relative to the area of the truth annotation but overlaps the truth annotation to
the degree specified. Figure 1 illustrates schematically how the overlap of predictions and
truth annotations can vary and how vvipr treats such overlaps (Figure 1).

Appropriate thresholds for the confidence level, truth overlap level, and prediction
overlap level for this data set required justification. We therefore conducted a sensitivity
analysis to assess how the counts of FP, FN, and TP varied across the range of potential
confidence threshold, truth overlap, and prediction overlap values to identify inputs
for analysis.
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Figure 1. Examples of assessing a model prediction (dashed lines) against a truth annotation (solid
line) based on the extent of overlap specified by the truth and prediction overlap parameters. In this
example, consider a truth overlap value of 0.5 and prediction overlap value of 0.5. The assessment
first considered the truth overlap threshold, and then the prediction overlap threshold. If either the
truth or the prediction thresholds are exceeded, the prediction is retained as a true positive. The
general flow of this process is depicted schematically in supplemental Figure S2.

3. Results
3.1. Sensitivity Analysis

Across the range of confidence thresholds, results from the penguin and fur seal
models suggested that a confidence limit of 0.2 was appropriate for rejecting many low-
confidence false positives while having relatively lower effects on the counts of true posi-
tives and false negatives (Figure 2). The sensitivity analysis suggested a truth overlap of 0.5
provided a reasonable threshold for the penguin and fur seals models (Figure 2). A level
of 0.5 avoided inflated model performance when low-overlap conditions are accepted
(i.e., increases in TP when low-overlap conditions are allowed) and avoids reduced model
performance when high-overlap conditions are rejected (relatively large decrease in TP
when high-overlap conditions are required). Similarly, the sensitivity analysis suggested
that a prediction overlap of 0.5 also provided a reasonable threshold for the penguin and fur
seal models. A prediction overlap of 0.5 represents a balance between inflated scores when
the threshold is low and reduced model performance caused by the rejection of predictions
if the threshold is too high. We therefore present results based on a confidence threshold of
0.2, a truth overlap threshold of 0.5, and a prediction overlap threshold of 0.5.

3.2. Model Performance

The seven different models yielded varying degrees of successful detection of pen-
guins, fur seal pups, or non-pups in the test images (Table 3, Figure 3). Generally, the
penguin models exhibited high Precision (Table 3), indicative of well-constrained model
predictions with a low false positive rate. However, the Accuracy of the penguin models
fell below our target threshold (0.9), largely due to a higher rate of false negatives in model
predictions (Figure 3a). The fur seal models performed more poorly. In particular, the rate
of false positives was 2–3× higher in the seal models than in the penguin models, whereas
the rate of false negatives exceeded 32% of all predictions in seal models (Table 3). In the
seal IR model, most fur seal pups were not detected (e.g., Figure 3b), leading to the lowest
mAP among the suite of models (Table 3). Relative to pups, the fur seal models exhibited
better detection of non-pup targets, leading to higher true positive rates and relatively low
false positive rates (Figure 3c).
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Figure 2. Counts of false positives (dashed lines), false negatives (thin lines), and true positives
(thick lines) as a function of confidence threshold (left column), truth overlap (middle column), and
prediction overlap (right column) parameters for the penguin (top row) and fur seals (bottom row)
data. Data displayed here represent results from the Peng_IR_TC and Seal_IR_TC models. For
illustration, we allowed one parameter to vary, whereas the other two remained fixed. Fixed values
for the respective panels were set at 0.2 (confidence threshold), 0.5 (truth overlap), and 0.5 (prediction
overlap). Vertical dotted lines highlight the thresholds used for analysis of all model predictions.

Table 3. Aggregate counts of false positives (FP), false negatives (FN), true positives (TP), and derived
performance metrics for the seven models trained and tested from thermal (IR) and color (RGB)
images. Accuracy, Precision, Recall, and F1 scores are calculated using the thresholds identified in
Figure 2. Mean average precision (mAP) scores for each model represent the mean average precision
across the range of ‘truth overlap’ thresholds (10–90%) for each target class. Model names are defined
in Table 2. Bold text identifies the model metrics exceeding 0.9.

Model FP FN TP Accuracy Precision Recall F1 mAP

Peng_IR_MC 48 70 756 0.86 0.94 0.92 0.93 0.78
Peng_IR_TC 51 88 738 0.84 0.94 0.89 0.91 0.79

Peng_RGB_TC 35 166 789 0.80 0.96 0.83 0.89 0.70
Peng_RGB_MC 34 218 737 0.75 0.96 0.77 0.85 0.74
Seal_RGB_TC 19 52 87 0.55 0.82 0.63 0.71 0.60

Seal_IR_TC 8 35 48 0.53 0.86 0.58 0.69 0.48
Seal_RGB_MC 16 75 73 0.45 0.82 0.49 0.62 0.74

In general, performance metrics for the penguin models exceeded those from the fur
seal models (Table 3). We attribute this difference to the reduced number of annotations
available to train a robust model for detecting fur seals. Furthermore, the results suggest
that the multi-class models that included annotations for non-target elements provided no
consistent improvement in the performance of the different models.

Among the penguin models, models based on IR images generally performed better,
but not in all performance metrics (Table 3). For example, among the penguin models,
Precision was marginally higher in the RGB models, but all other metrics were higher in
the IR models. Furthermore, all penguin models exhibited scores that met or exceeded our
initial target performance goal of 0.9 despite relatively small training sets. For the fur seal
models, no model achieved the target performance goal, and no IR or RGB model provided
a clear advantage. Overall, the general similarity of IR and RGB models for both penguins
and seals suggests no clear benefit of IR images relative to RGB image for building simple
detection models for penguins and seals.
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Figure 3. Examples of predication and annotation overlap for (a) penguins in the Peng_IR_MC
model where most truth annotations are entirely overlapped by predictions, indicating good model
performance; (b) pups in the Seal_IR_TC model, where model predictions rarely overlap truth
annotations, indicating poor model performance; and (c) non-pups in the the Seal_RGB_TC model,
where predications and truth annotations overlap in some areas, but not consistently throughout the
image. The upper row shows the annotations split as true and false positives over truth annotations,
and the lower panel shows the truth and predicted annotations overlaid on the corresponding images.

4. Discussion

Despite small sample sizes for annotation and model training, we successfully trained
automated image analysis algorithms to detect and classify penguin and pinniped targets
from IR and RGB images. Although general detectors based on convolutional neural
networks often require tens of thousands of annotations to train [29], successful animal de-
tection models have been developed from pre-trained CNN models using several hundreds
of annotations [11,17,18], consistent with our sample sizes. Nonetheless, due to the limited
availability of training data from our UAS flights, we caution that the models remain
inadequate for implementing colony-wide censuses. However, the models are adequate to
evaluate the potential benefits of IR images relative to RGB images for automating detec-
tion of penguins and fur seals in aerial imagery collected by UAS. We concluded that the
available IR and RGB images provided generally equivalent information for automating the
detection of penguins and fur seals. We also determined that the annotation of non-target
features provided no clear advantage for the detection and correct classification of target
classes in the trained models.

We expected that an IR sensor would allow for improved model performance for de-
tecting and classifying penguin and pinniped targets relative to models using a traditional
RGB sensor. A prior demonstration with high-accuracy detections of pinnipeds based on
IR sensors [16] and the expectation of a relatively strong contrast of warm targets against
a cold polar substrate [22] support this expectation. However, the nature of the physical
environment, the size of targets, and the capability of the sensor itself appear to have
limited its utility in this study. For example, thermal sensors have shown promise for accu-
rate target detections in applications where vegetation or darkness obscures animals [30]
or with relatively large targets [16,22]. However, in our study colonies, vegetation and
daylight during the summer breeding season do not preclude visual detections. Moreover,
the lower resolution of the IR sensor relative to the RGB sensor resulted in greater blurring
and reduced our ability to differentiate species and life stages, particularly for small-bodied
penguins that present an area ≈0.07 m2 when prone. The combination of these limitations
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precluded the identification of a clear advantage of one sensor over the other for use in
automating target detection in this study.

We note that the major constraint on model training in this study was the poor image
quality from the IR sensor that severely limited sample sizes. The reasons for reduced image
quality are unclear but may have resulted from unanticipated interactions between the
APH-28 platform, the IR sensor, and the cold and windy local environmental conditions that
ultimately resulted in image blur. Though it is not our intent to review the performance of
the IR sensor, we note that other IR sensors [16] do not appear to have limited detectability
of targets in other applications. Despite the fact that thermal cameras remain a viable and
important option for further testing, traditional RGB sensors provide an effective option for
future efforts to operationalize automated image analysis pipelines. Namely, the generally
higher resolution to resolve small targets, wider commercial availability for proper mating
with rapidly changing UAS platforms, and intuitiveness of traditional RGB sensors and
their outputs are tangible advantages to consider.

The results from our experimental approach to compare models based on target-
only annotations with models that included additional, non-target annotations suggested
no strong difference in model performance. We expected that the addition of non-target
annotations would constrain the detection of target classes and improve model performance.
Counterintuitively, the addition of non-target classes in our annotations generally led to
models with similar or reduced performance. This negative result suggests a potentially
time-saving step for analyses, where the annotation of non-target classes may be avoided,
provided target annotations are complete.

Finally, we note that verifying model predictions and assessing model performance
represents a key step in developing automated workflows. Though manual verification
of model predictions is possible, it can be cumbersome, time consuming, and difficult (if
not impossible) to consistently apply the same set of conditions for analysis, especially
across different observers. We developed an R package, vvipr (v0.3.2; https://github.
com/us-amlr/vvipr; accessed on 14 September 2022) to increase the transparency and
repeatability of the model verification process for VIAME model outputs, while providing
flexibility to adjust model performance thresholds as required by different projects. For
non-R users, vvipr also includes a stand-alone shiny [25] web application that enables the
rapid estimation of model performance and visualization of how each model prediction
is evaluated. Standardizing the process for model assessment is especially useful for
evaluating multiple competing models to identify candidates for further development
or deployment and for assessing appropriate thresholds for identifying true and false
positives among the set of predictions. We contend that the iterative process to correctly
assign a status of false positive, false negative, or true positive to model predictions vastly
benefits from a standard, repeatable process to ensure performance metrics are computed
across models consistently.

5. Conclusions

We aimed to compare the efficacy of IR and RGB sensors for use in developing
automated classification methods. Our experimental approach helped directly assess the
relative strengths of IR versus RGB images for the automation of species detection and
classification from aerial drone surveys. In general, the relatively high performance of
the penguin models provides encouraging results for implementing machine learning
techniques to improve data acquisition from drone surveys of seabirds and pinnipeds in the
near future. More specifically, we conclude that the IR images provided no clear advantages
for target detection relative to the RGB images. Considering the need to distinguish species
and life stages in aerial imagery for accurate population assessments, RGB images appear
to offer a greater opportunity for further model development at this time.

Developing a robust automated classification model for deployment on novel images
remains an important task. There are several important issues to address in relation to
such a development. First, increasing sample sizes relative to those reported here will

https://github.com/us-amlr/vvipr
https://github.com/us-amlr/vvipr
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allow improved model training and validation on a broad suite of field conditions likely
encountered during UAS surveys. Second, similar to the comparison of sensor types
reported here, a comparison of machine learning approaches (e.g., YOLO [13], Faster R-
CNN [31], Mask R-CNN [32], and fuzzy decision trees [33]) will be useful for identifying
tradeoffs among alternative models. Fortunately, several object detector algorithms are
implemented within VIAME to facilitate such exploration [15]. Finally, we note that
multi-spectral sensors are increasingly available for use in small UAS applications [34].
Harnessing additional information from such sensors may improve the utility of imagery
for automating classification beyond simple RGB or IR images alone.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/drones6090255/s1. Figure S1: Example image from thermal (IR)
sensor with blurring for Antarctic fur seals and penguins. Figure S2: Schematic of image analysis
process from annotation of raw images through to model assessment using the vvipr tool. The
information and data can be downloaded from Zenodo at https://doi.org/10.5281/zenodo.6714100
(accessed on 14 September 2022).
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